[1] Synergistic effect of isolated Co and Fe dual active sites boosting the photocatalytic hydrogen evolution reaction [1] 13 /2018.06 / /2019 15 /2020.06 /2020 16 / / /2019 | [3] Nickel supported on Nitrogen-doped biomass carbon fiber fabricated via in-situ template technology for pH-universal electrocatalytic hydrogen evolution [4] [1] Construction of ternary hollow TiO2-ZnS@ZnO heterostructure with enhanced visible-light photoactivity [2] TiO2-ZnS@ZnO [1] Preparation of a Novel Electrochemical Sensor for Isoniazid Determination [2] A novel ion selective electrode based on reduced graphene oxide for potentiometric | | | [3] 1/8 | [3] Journal of Co
and Interface Sci | | |--|---|----------------|----------------|---|---------------------| | [4] | | [4] 2/7 | | [4] | [4] 2021.04 | | ZnS@ZnO heterostructure with enhanced | | | [1] 1/5 | [1] Journal o
Molecular Struc | | | [2] TiO2-Zn5 | S@ZnO | | [2] 1/2 | [1] | [2] 2021.5 | | | | | [1] 1/3 | [1] Internation
Journal of
Electrochemcal So
IF=1.765 | F11.2020.10 | | | for potentiometric | | [2] 1/4 | [2] Microchem
Journal IF=4.8 | | | Polyoxomolybdate and i | Preparation of Keggin-type
tyoxomolybdate and its Application as
actrochemical Sensor for Detection of
wodopa | | [3]1/5 | [3]International Jo
of Electrochem
Science IF=1.7 | cal [3]2021.10 | | CNTs/PbBiO2Cl nanos
with boosted photocatal | Ionic liquid-induced preparation of novel
ITs/PbBiO2Cl nanosheet photocatalyst
h boosted photocatalytic activity for the
noval of organic contaminants | | [1] 1/7 | [1] Colloids a
Surfaces A:
Physicochemical
Engineering Asp
IF = 4.539 | and [1] 2021.11 | | [2] Dual modulation ste
reducibility and transfer
molybdate nanoparticle
dioxide photoreduction | of bismuth
to boost carbon | | [2] 1/9 | [2] Journal of Co
And Interface Sc
IF = 8.128 | | | [3] Bi4MoO9 | | | [3] 1/5 | [3] | [3]2021.11 | | [4] BiOC | 10.510.5 | [4]2/5 | | [4] | [4] 2021.11 | | [1] Practical aptamer-ba
metal mercury ion in cor
environmental samples:
sensitivity | ntaminated
convenience and | [1] 2/6 | | [1] Analytical a
bioanalytical cher
IF=4.142 | | | sensitivity [2] Determination of Cr(VI) based on the peroxidase mimetic catalytic activity of citrate-capped gold nanoparticles | | [2] 2/4 | | [2] Microchim A
IF=5.833 | Acta [2] 2021.7 | | nanoparticies [1] Freestanding flexible molecularly imprinted nanocomposite membranes for selective separation applications: an imitated | | | [1] 1 | [1] New Journa
Chemistry | l of [1] 2020.11 | | [1] Unique Sill én-struct
entropy oxyhalide PbxC
enhanced photocatalytic | d1-xBiO2Br with | [1] | | [1] Applied Sur
Science | face [1] 2021.11 | | [2] | Sill én | [2] | | [2] | [2] 2021.05 | | [1] Surface structure reg
wastewater flocculated s
hierarchical superhydrop
coating | ludge for | | [1] 1/6 | [1] Journal of
Environments
Chemical Engine
IF=5.909 | al (11.2021.11 | | [2] | | | [2] 1/6 | [2]
CN1130832 | [2] 2021.07 | | [1] Chelation Assembly
Nanohydrogel onto Flov
Foam with Underwater of
for Highly Efficient Oil- | ver-Like Structured
Superoleophobicity | [1] | | [1] Nano | [1] 2021.06 | | | _ | | _ | | | | | | | | - | |-------------|------------|----------|-----------|-------|---|---|---|--|---|-------------|---| | | | | /2017.00 | | | | [2] Interfacial engineering for ultrafine
Co3O4 confined in graphene macroscopic
microspheres with boosting
peroxymonosulfate activation | [2] | [2] Journal of the
Taiwan Institute of
Chemical Engineers | [2] 2021.10 | | | 17 | | | / / /2019 | | | [1] Ag-Cu aerogel for electrochemical CO2 conversion to CO | [1] 1/6 | [1] Journal of Colloid
and Interface Science | [1] 2021.03 | | | | | | /2019.06 | | | | [2] CuAg nanoparticle/carbon aerogel for
electrochemical CO2 reduction
[3]Robust PU foam skeleton coated with | [2] 1/7 | [2] New Journal of
Chemistry | [2] 2021.09 | | | | | | | | | | [3]Robust PU foam skeleton coated with
hydroxylated BN as PVA thermal
conductivity filler via microwave-assisted
curing | [3] 1/3 | [3]Journal of Materials
Science-Materials In
Electronics | [3]2021.10 | | | | | | | | | | [4] CO ₂ | [4] 2/5 | [4] | [4]2021.10 | | | | 18 | | | /2022.06 | /2019 | | | [1] Platinum Single Atoms Anchored on a
Covalent Organic Framework: Boosting
Active Sites for Photocatalytic Hydrogen
Evolution | [1] (| [1] ACS Catal. | [1] 2021.10 | | | 19 | | | /2020.06 | /2020 | | | | | | | | | 20 /2019.06 | / /2019.06 | | | | | [1] Design of a ZnS/CdS/rGO composite
nanosheet photocatalyst with multi-interface
electron transfer for high conversion of CO ₂ . | [1] 1/8 | [1] Sustainable Energy
& Fuels IF=6.367) | [1] 2021.07 | | | | | | /2019 | | | [2] MOFs-derived C-In ₂ O ₃ /g-C ₃ N ₄
heterojunction for enhanced photoreduction
CO ₂ | [2] 1/5 | [2] Journal of
Environmental
Chemical
Engineering(IF=5.909) | [2] 2021.09 | | | | | | | | | | | [3]Fabricated hierarchical CdS/Ni-MOF
heterostructure for promoting photocatalytic
reduction of CO ₂ | [3] 1/6 | [3]Applied Surface
Science(IF=6.707) | [3]2021.11 | | | | | | | | | [4]Constructing Schottky junction via Pd
nanosheet on DUT-67 surfaces to
accelerating charge transfer. | [4] 1/9 | [4]Journal of Colloid
and Interface
Science(IF=8.128) | [4]2021.11 | | | | | 21 | /2018.06 | / /2019 | | | [1] LDH Composites toward Efficient Photoassisted Electrocatalytic Water Splitting. | [1] 1/13 | [1] ACS Applied
Materials & Interfaces. | [1] 2021.08 | | | | | | | | | | [2]Double-Phase Heterostructure within Fe-
Electrocatalytic Nitrogen Reduction. | [2] 1/8 | [2] ACS Sustainable &
Chemistry | [2] 2021.02 | | | | | | | | | | | [3] Cu5FeS4-Ni3S2@NF | [3] 2/9 | [3] | [3]2021.05 | | | | 22 | /2022.06 | //2019 | | | [1] Frameworks Based on a Zwitterionic Ligand as a Ratiometric Thermometer and a Selective Sensor for Nitroaromatic Explosives | [1] 1/8 | [1]Ind. Eng. Chem. Res | [1]2021.8 | | | | | | | | | | [2]
as Efficient Turn-Off Sensor for Water and
Unusual Turn-On Sensor for Ag ⁺ | [2]1/9 | [2]Cryst. Growth Des | [2]2021.9 | | | | | | | | | | [3]An Amino-Decorated Self-Catenated Capture and Conversion of CO ₂ | [3]1/9 | [3]Cryst. Growth Des | [3]2021.1 | | | |